Interferon Regulatory Factor-7 Synergizes with Other Transcription Factors through Multiple Interactions with p300/CBP Coactivators

Interferon regulatory factor (IRF)-7 is activated in response to virus infection and stimulates the transcription of a set of cellular genes involved in host antiviral defense. The mechanism by which IRF-7 is activated and cooperates with other transcription factors is not fully elucidated. Activati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-05, Vol.278 (18), p.15495-15504
Hauptverfasser: Yang, Hongmei, Lin, Charles H., Ma, Gang, Baffi, Michael O., Wathelet, Marc G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interferon regulatory factor (IRF)-7 is activated in response to virus infection and stimulates the transcription of a set of cellular genes involved in host antiviral defense. The mechanism by which IRF-7 is activated and cooperates with other transcription factors is not fully elucidated. Activation of IRF-7 results from a conformational change triggered by the virus-dependent phosphorylation of its C terminus. This conformational change leads to dimerization, nuclear accumulation, DNA-binding, and transcriptional transactivation. Here we show that activation of IRF-7, like that of IRF-3, is dependent on modifications of two distinct sets of Ser/Thr residues. Moreover, we show that different virus-inducible cis-acting elements display requirements for specific IRFs. In particular, the virus-responsive element of the ISG15 gene promoter can be activated by either IRF-3 or IRF-7 alone, whereas the P31 element of the interferon-β gene is robustly activated only when IRF-3, IRF-7, and the p300/CBP coactivators are all present. Furthermore, we find that IRF-7 interacts with four distinct regions of p300/CBP. These interactions not only stimulate the intrinsic transcriptional activity of IRF-7, but they are also indispensable for its ability to strongly synergize with other transcription factors, including c-Jun and IRF-3.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M212940200