Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1

The signalling cascade including Raf, mitogen-activated protein kinase (MAPK) kinase and extracellular-signal-regulated kinase (ERK) is important in many facets of cellular regulation. Raf is activated through both Ras-dependent and Ras-independent mechanisms, but the regulatory mechanisms of Raf ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2003-05, Vol.5 (5), p.427-432
Hauptverfasser: Yoshimura, Akihiko, Sasaki, Atsuo, Taketomi, Takaharu, Kato, Reiko, Saeki, Kazuko, Nonami, Atsushi, Sasaki, Mika, Kuriyama, Masamitsu, Saito, Naoaki, Shibuya, Masabumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The signalling cascade including Raf, mitogen-activated protein kinase (MAPK) kinase and extracellular-signal-regulated kinase (ERK) is important in many facets of cellular regulation. Raf is activated through both Ras-dependent and Ras-independent mechanisms, but the regulatory mechanisms of Raf activation remain unclear. Two families of membrane-bound molecules, Sprouty and Sprouty-related EVH1-domain-containing protein (Spred) have been identified and characterized as negative regulators of growth-factor-induced ERK activation. But the molecular functions of mammalian Sproutys have not been clarified. Here we show that mammalian Sprouty4 suppresses vascular epithelial growth factor (VEGF)-induced, Ras-independent activation of Raf1 but does not affect epidermal growth factor (EGF)-induced, Ras-dependent activation of Raf1. Sprouty4 binds to Raf1 through its carboxy-terminal cysteine-rich domain, and this binding is necessary for the inhibitory activity of Sprouty4. In addition, Sprouty4 mutants of the amino-terminal region containing the conserved tyrosine residue, which is necessary for suppressing fibroblast growth factor signalling, still inhibit the VEGF-induced ERK pathway. Our results show that receptor tyrosine kinases use distinct pathways for Raf and ERK activation and that Sprouty4 differentially regulates these pathways.
ISSN:1465-7392
1476-4679
DOI:10.1038/ncb978