O2-specific regulation of the ferrous heme-based sensor kinase FixL from Sinorhizobium meliloti and its aberrant inactivation in the ferric form
FixL, a rhizobial heme-based O2-sensing histidine kinase, catalyzes autophosphorylation in the deoxy form at low O2 tension, while the kinase activity is inhibited in the case of the O2-bound form. The present study unambiguously shows that the binding of CO and NO does not significantly inhibit the...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2003-04, Vol.304 (1), p.136-142 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | FixL, a rhizobial heme-based O2-sensing histidine kinase, catalyzes autophosphorylation in the deoxy form at low O2 tension, while the kinase activity is inhibited in the case of the O2-bound form. The present study unambiguously shows that the binding of CO and NO does not significantly inhibit the kinase activity of dithiothreitol (DTT)-reduced ferrous FixL from Sinorhizobium meliloti, which is inconsistent with the spin state mechanism previously reported. Kinase inactivation is caused by aberrant disulfide (S-S) bond formation at Cys301 in the ferric homodimer, which explains these contradictory observations. The addition of DTT cleaved the S-S bond, leading to restoration of kinase activity in the ferric form as well as heme reduction, but, sodium hydrosulfite treatment produced the kinase-inactive deoxy form without S-S cleavage. On the basis of these experimental results, it can be concluded that ferrous FixL discriminates O2 from CO and NO, and signals the O2-bound state by downregulating the phosphoryl transfer reaction. |
---|---|
ISSN: | 0006-291X |
DOI: | 10.1016/s0006-291x(03)00556-4 |