EC STM investigations of corrosion due to chloride solutions on thin CrN coatings

The focus of the investigations presented is to evaluate local alterations caused by chloride ions affecting thin, magnetron-sputtered CrN layers. Scanning-probe microscopy and analysis techniques are used for this estimation. Thin CrN layers were deposited by reactive magnetron sputtering. They wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2003-04, Vol.375 (7), p.871-874
Hauptverfasser: Zahn, Wieland, Zösch, Antje, Schnabel, Hans Dieter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The focus of the investigations presented is to evaluate local alterations caused by chloride ions affecting thin, magnetron-sputtered CrN layers. Scanning-probe microscopy and analysis techniques are used for this estimation. Thin CrN layers were deposited by reactive magnetron sputtering. They were investigated in electrochemical scanning tunnelling microscopy (EC STM) by cyclic voltammetry in 1 mol L(-1) NaCl. Simultaneously, the surface topography changes were recorded with STM. Above 100 mV the anodic oxidation leads to formation of chromium(III) hydroxide and at sample potentials above 350 mV oxidation of Cr(OH)(2) and Cr(OH)(3) towards chromium(VI) as a soluble chromate starts. Transpassive dissolution of the coating takes place above 900 mV. Yellow colour of the electrolyte is a visible sign for the formation of chromium(VI). Changes of the surface topography indicate the formation of surface layers at anodic potentials. At cathodic potentials increase in current is measured due to the reduction of chromium(III) hydroxide to divalent chromium and metallic chromium. Roughness of surface topography increases.Follow-up explorations with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic-force microscopy (AFM), scanning tunnelling microscopy/scanning tunnelling spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) not only evidence the formation of various chromium oxides, but also indicate the existence of chromium hydroxide.
ISSN:1618-2642
DOI:10.1007/s00216-002-1736-6