Mapping of Synergistic Components of Weakly Interacting Protein-Protein Motifs Using Arrays of Paired Peptides
Protein-protein recognition usually involves multiple interactions among different motifs that are scattered over protein surfaces. To identify such weak interactions, we have developed a novel double peptide synthesis (DS) method. This method allows us to map protein-protein interactions that invol...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-04, Vol.278 (17), p.15162-15167 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein-protein recognition usually involves multiple interactions among different motifs that are scattered over protein surfaces. To identify such weak interactions, we have developed a novel double peptide synthesis (DS) method. This method allows us to map protein-protein interactions that involve two linear dis- continuous components from a polypeptide by the use of spatially addressable synergistic pairs of synthetic peptides. The DS procedure is based on the “SPOT” membrane-bound peptide synthesis technique, but to synthesize a mixture of two peptides, it uses both Fmoc (N-(9-fluorenyl)methoxycarbonyl))-alanine and Alloc-alanine at the first cycle. This allows their selective deprotection by either piperidine or tributyltin/palladium treatment, respectively. Using SPOT DS, we confirmed as a proof of principle that Elk-1 Ser383 phosphorylation by ERK-2 kinase is stimulated by the presence of the Elk-1-docking domain. SPOT DS can also be used to dissect protein-protein motifs that define phosphatase substrate affinity. Using this technique, we identified three new regions in the insulin receptor that stimulate the dephosphorylation of the receptor by protein-tyrosine phosphatase (PTP) 1B and presumably increase the selectivity of PTP for this substrate. These data demonstrate that the SPOT DS technique allows the identification of non-linear weakly interacting protein motifs, which are an important determinant of protein kinase and phosphatase substrate specificity and of protein-protein interactions in general. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M211887200 |