Synergistic Effects of Cystic Fibrosis Transmembrane Conductance Regulator and Aquaporin-9 in the Rat Epididymis
The cystic fibrosis transmembrane conductance regulator (CFTR) and aquaporin-9 (AQP-9) are present in the luminal membrane of the epididymis, where they play an important role in formation of the epididymal fluid. Evidence is accumulating that CFTR regulates other membrane transport proteins besides...
Gespeichert in:
Veröffentlicht in: | Biology of reproduction 2003-05, Vol.68 (5), p.1505-1510 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cystic fibrosis transmembrane conductance regulator (CFTR) and aquaporin-9 (AQP-9) are present in the luminal membrane
of the epididymis, where they play an important role in formation of the epididymal fluid. Evidence is accumulating that CFTR
regulates other membrane transport proteins besides functioning as a cAMP-activated chloride channel. We have explored the
possible interaction between epididymal CFTR and AQP-9 by cloning them from the rat epididymis and expressing them in Xenopus oocytes. The effects of the expressed proteins on oocyte water permeability were studied by immersing oocytes in a hypo-osmotic
solution, and the ensuing water flow was measured using a gravimetric method. The results show that AQP-9 alone caused an
increase in oocyte water permeability, which could be further potentiated by CFTR. This potentiation was markedly reduced
by phloretin and lonidamine (inhibitors of AQP-9 and CFTR, respectively). The regulation of water permeability by CFTR was
also demonstrated in intact rat epididymis luminally perfused with a hypo-osmotic solution. Osmotic water reabsorption across
the epididymal tubule was reduced by phloretin and lonidamine. Elevation of intracellular cAMP with 3-isobutyl-1-methylxanthine
increased osmotic water permeability, whereas inhibiting protein kinase A with H-89 ( N -(2-[ p -bromocinnamylamino]ethyl)-5-isoquinoline sulfonamide hydrochloride) reduced it. These results are consistent with a role
for CFTR in controlling water permeability in the epididymis in vivo. We conclude that this additional role of CFTR in controlling
water permeability may have an impact on the genetic disease cystic fibrosis, in which men with a mutated CFTR gene have abnormal epididymis and infertility. |
---|---|
ISSN: | 0006-3363 1529-7268 |
DOI: | 10.1095/biolreprod.102.010017 |