Characterization of the Heparin Binding Sites in Human Apolipoprotein E
Apolipoprotein (apo) E mediates lipoprotein remnant clearance via interaction with cell-surface heparan sulfate proteoglycans. Both the 22-kDa N-terminal domain and 10-kDa C-terminal domain of apoE contain a heparin binding site; the N-terminal site overlaps with the low density lipoprotein receptor...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-04, Vol.278 (17), p.14782-14787 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Apolipoprotein (apo) E mediates lipoprotein remnant clearance via interaction with cell-surface heparan sulfate proteoglycans. Both the 22-kDa N-terminal domain and 10-kDa C-terminal domain of apoE contain a heparin binding site; the N-terminal site overlaps with the low density lipoprotein receptor binding region and the C-terminal site is undefined. To understand the molecular details of the apoE-heparin interaction, we defined the microenvironments of all 12 lysine residues in intact apoE3 and examined their relative contributions to heparin binding. Nuclear magnetic resonance measurements showed that, in apoE3-dimyristoyl phosphatidylcholine discs, Lys-143 and -146 in the N-terminal domain and Lys-233 in the C-terminal domain have unusually low pKa values, indicating high positive electrostatic potential around these residues. Binding experiments using heparin-Sepharose gel demonstrated that the lipid-free 10-kDa fragment interacted strongly with heparin and a point mutation K233Q largely abolished the binding, indicating that Lys-233 is involved in heparin binding and that an unusually basic lysine microenvironment is critical for the interaction with heparin. With lipidated apoE3, it is confirmed that the Lys-233 site is completely masked and the N-terminal site mediates heparin binding. In addition, mutations of the two heparin binding sites in intact apoE3 demonstrated the dominant role of the N-terminal site in the heparin binding of apoE even in the lipid-free state. These results suggest that apoE interacts predominately with cell-surface heparan sulfate proteoglycans through the N-terminal binding site. However, Lys-233 may be involved in the binding of apoE to certain cell-surface sites, such as the protein core of biglycan. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M213207200 |