Determinants of the in vivo folding of the prion protein. A bipartite function of helix 1 in folding and aggregation

Misfolding of the mammalian prion protein (PrP) is implicated in the pathogenesis of prion diseases. We analyzed wild type PrP in comparison with different PrP mutants and identified determinants of the in vivo folding pathway of PrP. The complete N terminus of PrP including the putative transmembra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-04, Vol.278 (17), p.14961-14970
Hauptverfasser: Winklhofer, Konstanze F, Heske, Johanna, Heller, Ulrich, Reintjes, Anja, Muranyi, Walter, Moarefi, Ismail, Tatzelt, Jorg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Misfolding of the mammalian prion protein (PrP) is implicated in the pathogenesis of prion diseases. We analyzed wild type PrP in comparison with different PrP mutants and identified determinants of the in vivo folding pathway of PrP. The complete N terminus of PrP including the putative transmembrane domain and the first beta-strand could be deleted without interfering with PrP maturation. Helix 1, however, turned out to be a major determinant of PrP folding. Disruption of helix 1 prevented attachment of the glycosylphosphatidylinositol (GPI) anchor and the formation of complex N-linked glycans; instead, a high mannose PrP glycoform was secreted into the cell culture supernatant. In the absence of a C-terminal membrane anchor, however, helix 1 induced the formation of unglycosylated and partially protease-resistant PrP aggregates. Moreover, we could show that the C-terminal GPI anchor signal sequence, independent of its role in GPI anchor attachment, mediates core glycosylation of nascent PrP. Interestingly, conversion of high mannose glycans to complex type glycans only occurred when PrP was membrane-anchored. Our study indicates a bipartite function of helix 1 in the maturation and aggregation of PrP and emphasizes a critical role of a membrane anchor in the formation of complex glycosylated PrP.
ISSN:0021-9258
DOI:10.1074/jbc.M209942200