The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers
In a direct test of the hypothesis that the M2 coat protein of influenza A can function as a proton translocator, we incorporated a synthetic peptide containing its putative transmembrane domain into voltage-clamped planar lipid bilayers. We observed single proton-selective ion channels with a condu...
Gespeichert in:
Veröffentlicht in: | Virology (New York, N.Y.) N.Y.), 1992-09, Vol.190 (1), p.485-489 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a direct test of the hypothesis that the M2 coat protein of influenza A can function as a proton translocator, we incorporated a synthetic peptide containing its putative transmembrane domain into voltage-clamped planar lipid bilayers. We observed single proton-selective ion channels with a conductance of ∼10 pS at a pH of 2.3, consistent with the association of several monomers around a central water-filled pore. The channels were reversibly blocked by the anti-influenza drug amantadine. These experiments imply a central role for M2 protein in virus replication and assembly and may explain the mechanism of action of amantadine. Analogous proteins may have a similar function in other viruses, and these may be susceptible to similar antiviral agents. |
---|---|
ISSN: | 0042-6822 1096-0341 |
DOI: | 10.1016/0042-6822(92)91239-Q |