Structural studies on human glutathione S-transferase pi. Substitution mutations to determine amino acids necessary for binding glutathione

In order to identify amino acids involved in binding the co-substrate glutathione to the human glutathione S-transferase (GST) pi enzyme, we assembled three criteria to implicate amino acids whose role in binding and catalysis could be tested. Presence of a residue in the highly conserved exon 4 of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1992-09, Vol.267 (26), p.18940-18945
Hauptverfasser: HERBERT MANOHARAN, T, GULICK, A. M, PUCHALSKI, R. B, SERVAIS, A. L, FAHL, W. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to identify amino acids involved in binding the co-substrate glutathione to the human glutathione S-transferase (GST) pi enzyme, we assembled three criteria to implicate amino acids whose role in binding and catalysis could be tested. Presence of a residue in the highly conserved exon 4 of the GST gene, positional conservation of a residue in 12 glutathione S-transferase amino acid sequences, and results from published chemical modification studies were used to implicate 14 residues. A bacterial expression vector (pUC120 pi), which enabled abundant production (2-26% of soluble Escherichia coli protein) of wild-type or mutant GST pi, was constructed, and, following nonconservative substitution mutation of the 14 implicated residues, five mutants (R13S, D57K, Q64R, I68Y, L72F) showed a greater than 95% decrease in specific activity. A quantitative assay was developed which rapidly measured the ability of wild-type or mutant glutathione S-transferase to bind to glutathione-agarose. Using this assay, each of the five loss of function mutants showed a greater than 20-fold decrease in binding glutathione, an observation consistent with a recent crystal structure analysis showing that several of these residues help to form the glutathione-binding cleft.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)37051-6