Potentiometric, spectrophotometric and density functional study of the interaction of N-hydroxyacetamide with oxovanadium(IV): the influence of ligand to the V(IV)/V(V) oxi-reduction reaction
The interaction of N-hydroxyacetamide (acetohydroxamic acid, HL) with V(IV) in aqueous solution has been investigated using potentiometric and spectrophotometric experiments. Density functional method (DFT) has been used aiming to understand the ligand chelation at a molecular level. Stability const...
Gespeichert in:
Veröffentlicht in: | Journal of inorganic biochemistry 2003-05, Vol.95 (1), p.14-24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The interaction of
N-hydroxyacetamide (acetohydroxamic acid, HL) with V(IV) in aqueous solution has been investigated using potentiometric and spectrophotometric experiments. Density functional method (DFT) has been used aiming to understand the ligand chelation at a molecular level. Stability constants have been estimated for species with the metal/ligand ratios 1:1 and 1:2 from spectrophotometric and potentiometric measurements. The stability of these V(IV) species toward oxidation has been investigated. Experiments carried out in an oxygen atmosphere led to the displacement of the titration curves with respect to the one obtained under inert atmosphere. Spectrophotometric evidence of the V(IV)/V(V) oxidation in the presence of
N-hydroxyacetamide is presented. It has been shown that V(IV)/V(V) oxidation in the presence of
N-hydroxyacetamide by the oxygen can be simulated using the standard programs for simulating the equilibrium in a multiligand/multimetal system. In this approach, the oxygen is considered a ligand and the log
β estimated from the standard oxidation potential. The structure and respective tautomers of the species have been optimized from DFT calculations. Geometrical and thermodynamical properties have been estimated for the most stable complexes. The VOL→VOL
2 equilibrium constant has been theoretically estimated with a less than 1.5 logarithmic unit of error with respect to the experimental estimate. The oxidation process has also been investigated and it is adequately described by the equation: 4[VOL
2]+2H
2O+O
2→4[VO(OH)L
2]. The calculated value of Δ
G for this reaction is about −46.2 kcal mol
−1, in excellent agreement with the experimental estimates. |
---|---|
ISSN: | 0162-0134 1873-3344 |
DOI: | 10.1016/S0162-0134(03)00072-2 |