The ATP-Mg/Pi carrier of rat liver mitochondria catalyzes a divalent electroneutral exchange
Net transport of ATP-Mg or ADP in exchange for phosphate in isolated rat liver mitochondria has been shown to be an electroneutral process mediated by the ATP-Mg/Pi carrier. We compared the steady state distribution ratios of phosphate, ATP-Mg, and ADP at a pH of 7.4 to determine whether the divalen...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1992-09, Vol.267 (27), p.19198-19203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Net transport of ATP-Mg or ADP in exchange for phosphate in isolated rat liver mitochondria has been shown to be an electroneutral
process mediated by the ATP-Mg/Pi carrier. We compared the steady state distribution ratios of phosphate, ATP-Mg, and ADP
at a pH of 7.4 to determine whether the divalent or monovalent form of these anions is the transported substrate. The log
of the divalent ATP-Mg distribution ratio (in/out) approached the log of the divalent phosphate distribution ratio (approximately
0.85), which was approximately twice the value of the delta pH (approximately 0.40) across the inner mitochondrial membrane.
This steady state relationship held under several different conditions, e.g. when the medium ATP concentration was varied
or if the phosphate gradient was modified by partial uncoupling with the proton ionophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone.
Unidirectional ADP efflux in exchange for external ADP or ATP-Mg was stimulated by an increase in matrix H+. The log of the
trivalent ADP distribution ratio (approximately 1.20) approached 3 times the value of delta pH. All these data are consistent
with the model of an electroneutral exchange of divalent phosphate (HPO2-4) for divalent ATP-Mg (ATP-Mg2-) or for divalent
protonated ADP (HADP2-). We conclude that this transport mechanism accounts for the adenine nucleotide concentration gradient
that normally exists between the matrix and external medium. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)41761-9 |