Role of radial fibers in controlling the onset of myelination

Recent in vitro study showed that astrocytes induce oligodendrocyte processes to adhere to axons. However, the role of astrocytes in myelination in vivo remains unknown. We have, therefore, conducted a study to clarify the possible involvement of astrocytes during the initial myelination process. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2003-05, Vol.72 (3), p.279-289
Hauptverfasser: Nakahara, Jin, Takemura, Masaaki, Gomi, Hiroshi, Tsunematsu, Ken-ichiro, Itohara, Shigeyoshi, Asou, Hiroaki, Ogawa, Masaharu, Aiso, Sadakazu, Tan-Takeuchi, Kyoko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent in vitro study showed that astrocytes induce oligodendrocyte processes to adhere to axons. However, the role of astrocytes in myelination in vivo remains unknown. We have, therefore, conducted a study to clarify the possible involvement of astrocytes during the initial myelination process. In newborn mice, the expression of glial fibrillary acidic protein (GFAP), a marker for astrocytes, was restricted to a few fibrous architectures in the subventricular zone (SVZ), but we did not observe any GFAP‐positive astrocytes. Prior to the onset of myelination, GFAP became transiently expressed in the cells with radial fibers elongating from the SVZ to the pia of cerebral cortex, and myelin‐associated glycoprotein (MAG)‐positive premyelinating oligodendrocytes appeared as neighbors to them, with the processes attaching to radial fibers, but not to axons. These GFAP‐positive “radial” cells lost their fibrous architecture and became typical GFAP‐positive astrocytes at about 10 days postnatally, when myelination set in, indicating that the disappearance of radial fibers coordinates with the initiation of myelination. From these results, we propose that premyelinating oligodendrocytes are in contact with radial fibers rather than axons and that the cytoarchitectural transformation of radial fibers into astrocytes is involved substantially in controlling the onset of initial myelination. Our proposal was further confirmed by GFAP‐deficient mice, in which the disappearance of these radial fibers and the initiation of myelination were delayed in parallel. Our findings together suggest that myelination in vivo is in concert with astrocytic differentiation, involving radial fibers therein, rather than being a mere axon–oligodendrocyte interaction. © 2003 Wiley‐Liss, Inc.
ISSN:0360-4012
1097-4547
DOI:10.1002/jnr.10593