Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects
Interleukin-6 (IL-6) is produced locally in working skeletal muscle and can account for the exercise-induced increase in plasma IL-6. The transcription rate for IL-6 in muscle nuclei isolated from muscle biopsies during exercise is very high and is enhanced further when muscle glycogen content is lo...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2003-04, Vol.446 (1), p.9-16 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interleukin-6 (IL-6) is produced locally in working skeletal muscle and can account for the exercise-induced increase in plasma IL-6. The transcription rate for IL-6 in muscle nuclei isolated from muscle biopsies during exercise is very high and is enhanced further when muscle glycogen content is low. Furthermore, cultured human primary muscle cells can increase IL-6 mRNA when incubated with the calcium ionophore ionomycin and it is likely that myocytes produce IL-6 in response to muscle contraction. The biological roles of muscle-derived IL-6 have been investigated in studies in which human recombinant IL-6 was infused in healthy volunteers to mimic closely the IL-6 concentrations observed during prolonged exercise. Using stable isotopes, we have demonstrated that physiological concentrations of IL-6 induce lipolysis. Although we have yet to determine the precise biological action of muscle-derived IL-6, our data support the hypothesis that the role of IL-6 released from contracting muscle during exercise is to act in a hormone-like manner to mobilize extracellular substrates and/or augment substrate delivery during exercise. In addition, IL-6 inhibits low-level TNF-alpha production, and IL-6 produced during exercise probably inhibits TNF-alpha-induced insulin resistance in peripheral tissues. Hence, IL-6 produced by skeletal muscle during contraction may play an important role in the beneficial health effects of exercise |
---|---|
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/s00424-002-0981-z |