Signal pathway responsible for hepatocyte preconditioning by nitric oxide
Nitric oxide (NO) improves liver resistance to hypoxia/reperfusion injury acting as a mediator of hepatic preconditioning. However, the mechanisms involved are still poorly understood. In this study, we have investigated the mechanisms by which short-term exposure to the NO donor (Z)-1-(N-methyl-N-[...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2003-04, Vol.34 (8), p.1047-1055 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitric oxide (NO) improves liver resistance to hypoxia/reperfusion injury acting as a mediator of hepatic preconditioning. However, the mechanisms involved are still poorly understood. In this study, we have investigated the mechanisms by which short-term exposure to the NO donor (Z)-1-(N-methyl-N-[6-(N-methylammoniohexyl)amino])-diazen-1-ium-1,2-diolate (NOC-9) increases hepatocyte tolerance to hypoxic injury. Isolated rat hepatocytes preincubated 15 min with NOC-9 (0.250 mM) became resistant to the killing caused by hypoxia. NOC-9 cytoprotection did not involve the activation of protein kinase C, but was instead blocked by inhibiting soluble guanylate cyclase with 1H-(1,2,4)-oxadiazolo-(4,3) quinoxalin-1-one (ODQ) (50 μM) or cGMP-dependent kinase (cGK) with KT 5823 (5 μM). Conversely, cGMP analogue, 8Br-cGMP (50 μM) mimicked the effect of NOC-9. Western blot analysis revealed that hepatocyte treatment with NOC-9 or 8Br-cGMP significantly increased dual phosphorylation of p38 MAPK. The activation of p38 MAPK was abolished by inhibiting guanylate cyclase or cGK. Pretreatment with NO significantly reduced intracellular Na
+ accumulation in hypoxic hepatocytes. This effect was reverted by KT 5823 as well as by the p38 MAPK inhibitor SB203580. SB203580 also reverted NOC-9 protection against hypoxic injury. Altogether, these results demonstrated that NO can induce hepatic preconditioning by activating p38 MAPK through a guanylate cyclase/cGK-mediated pathway. |
---|---|
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/S0891-5849(03)00039-X |