Genetic profiling of alpha 1-adrenergic receptor subtypes by oligonucleotide microarrays: coupling to interleukin-6 secretion but differences in STAT3 phosphorylation and gp-130
Alpha(1)-adrenoceptor subtypes (alpha(1A)-, alpha(1B)-, alpha(1D)-) are known to couple to similar signaling pathways, although differences among the subtypes do exist. As a more sensitive assay, we used oligonucleotide microarrays to identify gene expression changes in Rat-1 fibroblasts stably expr...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 2003-05, Vol.63 (5), p.1104-1116 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alpha(1)-adrenoceptor subtypes (alpha(1A)-, alpha(1B)-, alpha(1D)-) are known to couple to similar signaling pathways, although differences among the subtypes do exist. As a more sensitive assay, we used oligonucleotide microarrays to identify gene expression changes in Rat-1 fibroblasts stably expressing each individual subtype. We report the gene expressions that change by at least a factor of 2 or more. Gene expression profiles significantly changed equally among all three subtypes, despite the unequal efficacy of the inositol phosphate response. Gene expressions were clustered into cytokines/growth factors, transcription factors, enzymes, and extracellular matrix proteins. There were also a number of individual subtype-specific changes in gene expression, suggesting a link to independent pathways. In addition, all three alpha(1)-AR subtypes robustly stimulated the transcription of the prohypertrophic cytokine interleukin (IL)-6, but differentially altered members of the IL-6 signaling pathway (gp-130 and STAT3). This was confirmed by measurement of secreted IL-6, activated STAT3, and gp-130 levels. Activation of STAT3 Tyr705 phosphorylation by the alpha(1)-ARs was not through IL-6 activation but was synergistic with IL-6, suggesting direct effects. Interestingly, alpha(1B)-AR stimulation caused the dimerization-dependent phosphorylation of Tyr705 on STAT3 but did not activate the transcriptional-dependent phosphorylation of Ser727. The alpha(1B)-AR also constitutively down-regulated the protein levels of gp-130. These results suggest that the alpha(1B)-AR has differential effects on the phosphorylation status of the STAT3 pathway and may not be as prohypertrophic as the other two subtypes. |
---|---|
ISSN: | 0026-895X 1521-0111 |
DOI: | 10.1124/mol.63.5.1104 |