The Influence of Chitosan on in Vitro Properties of Eudragit RS Microspheres

Eudragit RS microspheres containing chitosan hydrochloride were prepared by the solvent evaporation method using acetone/liquid paraffin solvent system and their properties were compared with Eudragit RS microspheres without chitosan, prepared in our previous study. Different stirring rates were app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical & Pharmaceutical Bulletin 2003, Vol.51(4), pp.359-364
Hauptverfasser: Kriznar, Bozena, Mateovic, Tatjana, Bogataj, Marija, Mrhar, Aleš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eudragit RS microspheres containing chitosan hydrochloride were prepared by the solvent evaporation method using acetone/liquid paraffin solvent system and their properties were compared with Eudragit RS microspheres without chitosan, prepared in our previous study. Different stirring rates were applied (400—1200 rpm) and drug content, Higuchi dissolution rate constant, surface and structure characteristics of the microspheres were determined for each size fraction. An increase in average particle size with a reduction of stirring rate appeared in limited interval in both series. The average particle size of microspheres without chitosan, prepared at the same stirring rate, was smaller. Pipemidic acid content increased with increasing fraction particle size, but not with increasing stirring rate as it was observed for microspheres without chitosan. We presume that high pipemidic acid content in larger microspheres is a consequence of cumulation of undissolved pipemidic acid particles in larger droplets during microspheres preparation procedure. Pipemidic acid release was faster from microspheres with chitosan and no correlation between Higuchi dissolution rate constant and stirring rate or fraction particle size was found, though it existed in the system without chitosan. Structure and surface characteristics of microspheres observed by scanning electron microscope (SEM) were not changed significantly by incorporation of chitosan. But in contrast with microspheres without chitosan, the surface of chitosan microspheres was more porous after three hours of dissolution. It is supposed that the influence of particle size fraction and stirring rate on release characteristics is expressed to a great extent through porosity and indirectly through total effective surface area, but the incorporation of highly soluble component i.e. chitosan salt hides these effects on drug release. In conclusion, changes in biopharmaceutical properties due to varying stirring rate and fraction particle size exhibited the same direction as those reported for the microspheres without chitosan, although they are less expressed because of increased experimental variability, likely caused by chitosan.
ISSN:0009-2363
1347-5223
DOI:10.1248/cpb.51.359