Gamma-tubulin functions in the nucleation of a discrete subset of microtubules in the eukaryotic flagellum

gamma-tubulin is an essential part of a multiprotein complex that nucleates the minus end of microtubules. Although the function of gamma-tubulin in nucleating cytoplasmic and mitotic microtubules from organizing centers such as the centrosome and spindle pole body is well documented, its role in mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2003-04, Vol.13 (7), p.598-602
Hauptverfasser: McKean, Paul G, Baines, Andrea, Vaughan, Sue, Gull, Keith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:gamma-tubulin is an essential part of a multiprotein complex that nucleates the minus end of microtubules. Although the function of gamma-tubulin in nucleating cytoplasmic and mitotic microtubules from organizing centers such as the centrosome and spindle pole body is well documented, its role in microtubule nucleation in the eukaryotic flagellum is unclear. Here, we have used Trypanosoma brucei to investigate possible functions of gamma-tubulin in the formation of the 9 + 2 flagellum axoneme. T. brucei possesses a single flagellum and forms a new flagellum during each cell cycle. We have used an inducible RNA interference (RNAi) approach to ablate expression of gamma-tubulin, and, after induction, we observe that the new flagellum is still formed but is paralyzed, while the old flagellum is unaffected. Electron microscopy reveals that the paralyzed flagellum lacks central pair microtubules but that the outer doublet microtubules are formed correctly. These differences in microtubule nucleation mechanisms during flagellum growth provide insights into spatial and temporal regulation of gamma-tubulin-dependent processes within cells and explanations for the organization and evolution of axonemal structures such as the 9 + 0 axonemes of sensory cells and primary cilia.
ISSN:0960-9822
DOI:10.1016/S0960-9822(03)00174-X