Pressure-dependent Fourier transform infrared spectroscopy of a poly (ester urethane)

The effects of hydrostatic pressure upon (1) a segmented poly (ester urethane), (2) a hydrolytically degraded sample of the same polymer, and (3) models for the polyurethane and polyester segments in this polymer have been studied by Fourier transform infrared spectroscopy using high-pressure diamon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2003-01, Vol.59 (2), p.309-319
Hauptverfasser: Schoonover, Jon R., Dattelbaum, Dana M., Osborn, Jill C., Bridgewater, Jon S., Kenney, John W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of hydrostatic pressure upon (1) a segmented poly (ester urethane), (2) a hydrolytically degraded sample of the same polymer, and (3) models for the polyurethane and polyester segments in this polymer have been studied by Fourier transform infrared spectroscopy using high-pressure diamond anvil cells (DACs). The pressure responses of the vibrational frequencies of specific functional groups of the poly (ester urethane) in the 0–100-kbar range are compared with data for individual segment models and the partially degraded sample. The results indicated that the polymer is highly stable in this pressure regime, with no measurable degradation or phase changes. Differences in the pressure dependency of specific infrared bands between the poly (ester urethane) sample and the partially degraded sample are slight and consistent with changes in hydrogen-bonding interactions and shorter chain lengths in the degraded sample.
ISSN:1386-1425
DOI:10.1016/S1386-1425(02)00173-7