FTIR Spectroscopic Studies of the Stabilities and Reactivities of Hydrogen-Terminated Surfaces of Silicon Nanowires

Attenuated total reflection Fourier transform infrared (FTIR) spectroscopy was used to characterize the surface species on oxide-free silicon nanowires (SiNWs) after etching with aqueous HF solution. The HF-etched SiNW surfaces were found to be hydrogen-terminated; in particular, three types of sili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2003-04, Vol.42 (7), p.2398-2404
Hauptverfasser: Sun, X. H, Wang, S. D, Wong, N. B, Ma, D. D. D, Lee, S. T, Teo, Boon K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Attenuated total reflection Fourier transform infrared (FTIR) spectroscopy was used to characterize the surface species on oxide-free silicon nanowires (SiNWs) after etching with aqueous HF solution. The HF-etched SiNW surfaces were found to be hydrogen-terminated; in particular, three types of silicon hydride species, the monohydride (SiH), the dihydride (SiH2), and the trihydride (SiH3), had been observed. The thermal stability of the hydrogen-passivated surfaces of SiNWs was investigated by measuring the FTIR spectra after annealing at different elevated temperatures. It was found that hydrogen desorption of the trihydrides occurred at ∼550 K, and that of the dihydrides occurred at ∼650 K. At or above 750 K, all silicon hydride species began to desorb from the surfaces of the SiNWs. At around 850 K, the SiNW surfaces were free of silicon hydride species. The stabilities and reactivities of HF-etched SiNWs in air and water were also studied. The hydrogen-passivated surfaces of SiNWs showed good stability in air (under ambient conditions) but relatively poor stability in water. The stabilities and reactivities of the SiNWs are also compared with those of silicon wafers.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic020723e