Design of Peptide-Acridine Mimics of Ribonuclease Activity
A series of peptide-acridine conjugates was designed and synthesized, based on three features of the proposed catalytic mechanism of RNase A: 2'-proton abstraction by His-12, proton donation to the leaving 5'-oxygen by His-119, and stabilization of the pentacoordinated phosphorous transiti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1992-08, Vol.89 (15), p.7114-7118 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of peptide-acridine conjugates was designed and synthesized, based on three features of the proposed catalytic mechanism of RNase A: 2'-proton abstraction by His-12, proton donation to the leaving 5'-oxygen by His-119, and stabilization of the pentacoordinated phosphorous transition state by Lys-41. The substrate binding capability of RNase A was mimicked by the intercalator, acridine. Lysine served as a linker between acridine and the catalytic tripeptide. Cleavage of target RNA was monitored by agarose gel electrophoresis and by gel-permeation chromatography. The carboxyl-amidated conjugates HGHK(Acr)-NH2, HPHK(Acr)-NH2, and GGHK(Acr)-NH2 (where Acr indicates 2-methyl-9-acridinemethylene) all had similar hydrolytic activity. The catalytic mechanism most likely involved only the abstraction of the 2'-proton and stabilization of the transition state. These RNase mimics utilized rRNA and single-stranded RNA but not double-stranded RNA and tRNA as substrates. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.89.15.7114 |