Design of Peptide-Acridine Mimics of Ribonuclease Activity

A series of peptide-acridine conjugates was designed and synthesized, based on three features of the proposed catalytic mechanism of RNase A: 2'-proton abstraction by His-12, proton donation to the leaving 5'-oxygen by His-119, and stabilization of the pentacoordinated phosphorous transiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1992-08, Vol.89 (15), p.7114-7118
Hauptverfasser: Tung, Ching-Hsuan, Wei, Ziping, Leibowitz, Michael J., Stein, Stanley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of peptide-acridine conjugates was designed and synthesized, based on three features of the proposed catalytic mechanism of RNase A: 2'-proton abstraction by His-12, proton donation to the leaving 5'-oxygen by His-119, and stabilization of the pentacoordinated phosphorous transition state by Lys-41. The substrate binding capability of RNase A was mimicked by the intercalator, acridine. Lysine served as a linker between acridine and the catalytic tripeptide. Cleavage of target RNA was monitored by agarose gel electrophoresis and by gel-permeation chromatography. The carboxyl-amidated conjugates HGHK(Acr)-NH2, HPHK(Acr)-NH2, and GGHK(Acr)-NH2 (where Acr indicates 2-methyl-9-acridinemethylene) all had similar hydrolytic activity. The catalytic mechanism most likely involved only the abstraction of the 2'-proton and stabilization of the transition state. These RNase mimics utilized rRNA and single-stranded RNA but not double-stranded RNA and tRNA as substrates.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.89.15.7114