abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice

The phenomenon of a heterogeneous response to the same drug in different patients is well-known. An important reason is that, even at equal concentrations, the bioavailability of a drug depends on the interaction of the drug with the blood–brain barrier (BBB). In part, this is due to the drug-transp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of psychiatric research 2003-05, Vol.37 (3), p.179-185
Hauptverfasser: Uhr, Manfred, Grauer, Markus T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phenomenon of a heterogeneous response to the same drug in different patients is well-known. An important reason is that, even at equal concentrations, the bioavailability of a drug depends on the interaction of the drug with the blood–brain barrier (BBB). In part, this is due to the drug-transporting P-glycoprotein (P-gp), a product of the multiple drug resistance gene (ABCB1), which can transport drugs against a concentration gradient across the BBB back into the plasma and thereby reduce the bioavailability in the brain. In the present study, we have examined the uptake of the antidepressants citalopram and trimipramine into the brain of abcb1ab knockout mice compared with controls. One hour after s.c. injection of the drugs, concentrations of the two drugs and of the metabolite d-trimipramine in brain, spleen, kidney, liver and plasma were measured with HPLC. Significantly higher brain concentrations in knockout mice, showing that these drugs are substrates of P-gp and that the presence of P-gp reduces the effective bioavailability of these substances in the brain. The results of our study contradict an earlier report that citalopram is not actively transported from endothelial cells. These results were derived from an in vitro study, showing that due to the complexity of the BBB–drug interaction, it is difficult to transfer results from in vitro studies to the in vivo situation. We hypothesize that inter-individual differences in the activity of the ABCB1 gene can account in part for the great variation in clinical response to antidepressants in psychiatric patients, even at comparable plasma levels.
ISSN:0022-3956
1879-1379
DOI:10.1016/S0022-3956(03)00022-0