Use of emission-line intensities for a self-consistent determination of the particle densities in a transient plasma
A method for a self-consistent determination of the time history of the electron density, electron temperature, and ionic charge-state composition in a multicomponent plasma, using time-dependent measurements and calculations of absolute emission-line intensities, is presented. The method is applied...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-01, Vol.67 (1 Pt 2), p.016404-016404, Article 016404 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for a self-consistent determination of the time history of the electron density, electron temperature, and ionic charge-state composition in a multicomponent plasma, using time-dependent measurements and calculations of absolute emission-line intensities, is presented. The method is applied for studying the properties of an imploding gas-puff Z-pinch plasma that contains several oxygen ions up to the fifth ionization stage. Furthermore, by using intensity ratios of lines from different ion species, the electron temperature was determined with a much improved accuracy, in comparison to previous spectroscopic studies of the same plasma. The ion-density history obtained, together with the known time-dependent radial boundaries of the plasma shell, allowed for tracking the rise in time of the mass swept by the magnetic field during the implosion. |
---|---|
ISSN: | 1539-3755 1063-651X 1095-3787 |
DOI: | 10.1103/PhysRevE.67.016404 |