Scaling in ordered and critical random boolean networks

Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2003-02, Vol.90 (6), p.068702-068702, Article 068702
Hauptverfasser: Socolar, J E S, Kauffman, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 068702
container_issue 6
container_start_page 068702
container_title Physical review letters
container_volume 90
creator Socolar, J E S
Kauffman, S A
description Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides "ordered" from "chaotic" attractor dynamics. We study the scaling of the average number of dynamically relevant nodes and the median number of distinct attractors in such networks. Our calculations indicate that the correct asymptotic scalings emerge only for very large systems.
doi_str_mv 10.1103/physrevlett.90.068702
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73105763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73105763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-1872b5b478b525a9e922909a1be2f48026ee7bbcf058711793ca593b1196ef5e3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwCaCs2KXM2HUcL1HFS6oE4rG27GQCgTQudlrUv8eolZjN1WjmzuMwdo4wRQRxtfrYxkCbjoZhqmEKRamAH7AxgtK5QpwdsjGAwFwDqBE7ifETAJAX5TEbJREp9Jipl8p2bf-etX3mQ02B6sz2dVaFdmhTKQsp88vMed-R7bOehh8fvuIpO2psF-lsrxP2dnvzOr_PF493D_PrRV4JhUOOpeJOupkqneTSatKca9AWHfFmVgIviJRzVQOyTEcrLSortXCIuqBGkpiwy93cVfDfa4qDWbaxoq6zPfl1NEogSJW-mTC5a6yCj4lMY1ahXdqwNQjmj5h5SsSeabNIxIwGsyOWfBf7BWu3pPrftUckfgH_AWmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73105763</pqid></control><display><type>article</type><title>Scaling in ordered and critical random boolean networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Socolar, J E S ; Kauffman, S A</creator><creatorcontrib>Socolar, J E S ; Kauffman, S A</creatorcontrib><description>Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides "ordered" from "chaotic" attractor dynamics. We study the scaling of the average number of dynamically relevant nodes and the median number of distinct attractors in such networks. Our calculations indicate that the correct asymptotic scalings emerge only for very large systems.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.90.068702</identifier><identifier>PMID: 12633339</identifier><language>eng</language><publisher>United States</publisher><subject>Gene Expression ; Mathematical Computing ; Models, Genetic ; Nonlinear Dynamics</subject><ispartof>Physical review letters, 2003-02, Vol.90 (6), p.068702-068702, Article 068702</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-1872b5b478b525a9e922909a1be2f48026ee7bbcf058711793ca593b1196ef5e3</citedby><cites>FETCH-LOGICAL-c371t-1872b5b478b525a9e922909a1be2f48026ee7bbcf058711793ca593b1196ef5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2864,2865,27906,27907</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12633339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Socolar, J E S</creatorcontrib><creatorcontrib>Kauffman, S A</creatorcontrib><title>Scaling in ordered and critical random boolean networks</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides "ordered" from "chaotic" attractor dynamics. We study the scaling of the average number of dynamically relevant nodes and the median number of distinct attractors in such networks. Our calculations indicate that the correct asymptotic scalings emerge only for very large systems.</description><subject>Gene Expression</subject><subject>Mathematical Computing</subject><subject>Models, Genetic</subject><subject>Nonlinear Dynamics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMtOwzAQRS0EoqXwCaCs2KXM2HUcL1HFS6oE4rG27GQCgTQudlrUv8eolZjN1WjmzuMwdo4wRQRxtfrYxkCbjoZhqmEKRamAH7AxgtK5QpwdsjGAwFwDqBE7ifETAJAX5TEbJREp9Jipl8p2bf-etX3mQ02B6sz2dVaFdmhTKQsp88vMed-R7bOehh8fvuIpO2psF-lsrxP2dnvzOr_PF493D_PrRV4JhUOOpeJOupkqneTSatKca9AWHfFmVgIviJRzVQOyTEcrLSortXCIuqBGkpiwy93cVfDfa4qDWbaxoq6zPfl1NEogSJW-mTC5a6yCj4lMY1ahXdqwNQjmj5h5SsSeabNIxIwGsyOWfBf7BWu3pPrftUckfgH_AWmg</recordid><startdate>20030214</startdate><enddate>20030214</enddate><creator>Socolar, J E S</creator><creator>Kauffman, S A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030214</creationdate><title>Scaling in ordered and critical random boolean networks</title><author>Socolar, J E S ; Kauffman, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-1872b5b478b525a9e922909a1be2f48026ee7bbcf058711793ca593b1196ef5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Gene Expression</topic><topic>Mathematical Computing</topic><topic>Models, Genetic</topic><topic>Nonlinear Dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Socolar, J E S</creatorcontrib><creatorcontrib>Kauffman, S A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Socolar, J E S</au><au>Kauffman, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling in ordered and critical random boolean networks</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2003-02-14</date><risdate>2003</risdate><volume>90</volume><issue>6</issue><spage>068702</spage><epage>068702</epage><pages>068702-068702</pages><artnum>068702</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides "ordered" from "chaotic" attractor dynamics. We study the scaling of the average number of dynamically relevant nodes and the median number of distinct attractors in such networks. Our calculations indicate that the correct asymptotic scalings emerge only for very large systems.</abstract><cop>United States</cop><pmid>12633339</pmid><doi>10.1103/physrevlett.90.068702</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2003-02, Vol.90 (6), p.068702-068702, Article 068702
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_73105763
source MEDLINE; American Physical Society Journals
subjects Gene Expression
Mathematical Computing
Models, Genetic
Nonlinear Dynamics
title Scaling in ordered and critical random boolean networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20in%20ordered%20and%20critical%20random%20boolean%20networks&rft.jtitle=Physical%20review%20letters&rft.au=Socolar,%20J%20E%20S&rft.date=2003-02-14&rft.volume=90&rft.issue=6&rft.spage=068702&rft.epage=068702&rft.pages=068702-068702&rft.artnum=068702&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.90.068702&rft_dat=%3Cproquest_cross%3E73105763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73105763&rft_id=info:pmid/12633339&rfr_iscdi=true