Scaling in ordered and critical random boolean networks

Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2003-02, Vol.90 (6), p.068702-068702, Article 068702
Hauptverfasser: Socolar, J E S, Kauffman, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides "ordered" from "chaotic" attractor dynamics. We study the scaling of the average number of dynamically relevant nodes and the median number of distinct attractors in such networks. Our calculations indicate that the correct asymptotic scalings emerge only for very large systems.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.90.068702