Buspirone-induced antinociception is mediated by l-type calcium channels and calcium/caffeine-sensitive pools in mice

Previous studies have shown that buspirone, a partial 5-HT(1A) receptor agonist, produces antinociceptive effects in rats and mice; Ca(2+) plays a critical role as a second messenger in mediating nociceptive transmission. 5-HT(1A) receptors have been proven to be coupled functionally with various ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychopharmacologia 2003-03, Vol.166 (3), p.276-283
Hauptverfasser: LIANG, Jian-Hui, WANG, Xu-Hua, LIU, Rui-Ke, SUN, Hong-Lei, YE, Xiang-Feng, ZHENG, Ji-Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies have shown that buspirone, a partial 5-HT(1A) receptor agonist, produces antinociceptive effects in rats and mice; Ca(2+) plays a critical role as a second messenger in mediating nociceptive transmission. 5-HT(1A) receptors have been proven to be coupled functionally with various types of Ca(2+) channels in neurons, including N-, P/Q-, T-, or L-type. It was of interest to investigate the involvement of extracellular/intracellular Ca(2+) in buspirone-induced antinociception. To determine whether central serotonergic pathways participate in the antinociceptive processes of buspirone, and investigate the involvement of Ca(2+) mechanisms, particularly L-voltage-gated Ca(2+) channels and Ca(2+)/caffeine-sensitive pools, in buspirone-induced antinociception. Antinociception was assessed using the hot-plate test (55 degrees C, hind-paw licking latency) in mice treated with either buspirone (1.25-20 mg/kg i.p.) alone or the combination of buspirone and fluoxetine (2.5-10 mg/kg i.p.), 5-HTP (25 mg/kg i.p.), nimodipine (2.5-10 mg/kg i.p.), nifedipine (2.5-10 mg/kg i.p.), CaCl(2) (25-200 nmol per mouse i.c.v.), EGTA (5-30 nmol per mouse i.c.v.), or ryanodine (0.25-2 nmol per mouse i.c.v.). Buspirone dose dependently increased the licking latency in the hot-plate test in mice. This effect of buspirone was enhanced by fluoxetine, 5-HTP, nimodipine, and nifedipine. Interestingly, central administration of Ca(2+) reversed the antinociceptive effects of buspirone. In contrast to these, ryanodine or EGTA administered centrally potentiated buspirone-induced antinociception. Decreasing neuronal Ca(2+) levels potentiated buspirone-induced antinociception; conversely, increasing intracellular Ca(2+) abolished the antinociceptive effects of buspirone. These results suggest that Ca(2+) influx from extracellular fluid and release of Ca(2+) from Ca(2+)/caffeine-sensitive microsomal pools may be involved in buspirone-induced antinociception.
ISSN:0033-3158
1432-2072
DOI:10.1007/s00213-002-1327-4