Novel succinate dehydrogenase subunit B (SDHB) mutations in familial phaeochromocytomas and paragangliomas, but an absence of somatic SDHB mutations in sporadic phaeochromocytomas

Phaeochromocytomas arising in adrenal or extra-adrenal sites and paragangliomas of the head and neck, in particular of the carotid bodies, occur sporadically and also in a familial setting. In addition to mutations in RET and VHL in familial disease, germline mutations in SDHD and SDHB genes that en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2003-03, Vol.22 (9), p.1358-1364
Hauptverfasser: BENN, Diana E, CROXSON, Michael S, TUCKER, Kathy, BAMBACH, Christopher P, RICHARDSON, Anne Louise, DELBRIDGE, Leigh, PULLAN, Peter T, HAMMOND, Jeremy, MARSH, Deborah J, ROBINSON, Bruce G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phaeochromocytomas arising in adrenal or extra-adrenal sites and paragangliomas of the head and neck, in particular of the carotid bodies, occur sporadically and also in a familial setting. In addition to mutations in RET and VHL in familial disease, germline mutations in SDHD and SDHB genes that encode subunits of mitochondrial complex II have also been associated with the development of familial phaeochromocytomas. To further investigate the role of SDHD and SDHB in the development of these tumours we determined the occurrence of germline SDHD and SDHB mutations in four patients with a family history of phaeochromocytoma with associated head and neck paraganglioma, one patient with a family history of phaeochromocytoma only and two patients with apparently sporadic extra-adrenal phaeochromocytoma, one of whom had early onset disease. Secondly, we investigated whether somatic SDHB mutations correlated with loss of heterozygosity at 1p36 in a subgroup of 11 sporadic and three MEN 2-associated RET-mutation-positive phaeochromocytomas. Novel SDHB mutations were identified in the probands from four families and two apparently sporadic cases (six of seven probands studied), including two missense mutations, a single nonsense and frameshift mutation, as well as two splice site mutations, one of which was shown to have partial penetrance resulting in 'leaky' splicing. Further, five intronic polymorphisms in SDHB were found. No SDHD mutations were identified. In addition, no somatic SDHB mutations were found in the remaining allele of the 11 sporadic adrenal phaeochromocytomas with allelic loss at 1p36 or the three MEN 2-associated RET-mutation-positive phaeochromocytomas. Therefore, we conclude that SDHB has a major role in the pathogenesis of familial phaeochromocytomas, but the possible role of SDHB in sporadic tumours showing allelic loss at 1p36 has yet to be ascertained.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1206300