De novo design, synthesis and evaluation of a non-steroidal diphenylnaphthyl propylene ligand for the estrogen receptor
There is still a strong need for additional diversity and new chemical scaffolds to allow for the exploration of improved tissue selectivity and finding better selective estrogen receptor modulators (SERMs). Using a de novo design technology a diphenylnaphthyl propylene scaffold, exemplified by (E)-...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2003-04, Vol.11 (7), p.1389-1396 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is still a strong need for additional diversity and new chemical scaffolds to allow for the exploration of improved tissue selectivity and finding better selective estrogen receptor modulators (SERMs). Using a de novo design technology a diphenylnaphthyl propylene scaffold, exemplified by (E)-9b, with ER antagonist activity has been generated. It was prepared by alkylating 1-[4-methoxyphenyl)-2-(4-(2-chloroethoxy)phenyl]-1-propanone under metal halogen exchange conditions with 1-iodo-6-methoxy-naphthalene. Following dehydration and cleavage of the methoxy groups, (E)-9b was formed by displacement of the chloro group with pyrrolidine. (E)-9b binding to ER generated calculated K(i) values of 3.7 nM for hER(alpha) and 72 nM for hER(beta). The antagonism of (E)-9b was demonstrated in cell transfection assays using the ERE from the vitA2 promotor and the natural ER-responsive pS2 promotor. With increasing concentrations of (E)-9b, the E(2)-dependent response was efficiently inhibited demonstrating that (E)-9b could function as an anti-estrogen in these assays. Interestingly, ER(alpha) activity was inhibited even below basal levels suggesting that ligand-independent activity of ER(alpha) was also inhibited. Computational docking studies suggest that the placement of the hydroxyl group on the naphthalene group may not be optimal and we are currently exploring additional analogues. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/S0968-0896(02)00647-8 |