Monitoring the prevalence of the parasitic dinoflagellate Hematodinium sp. in snow crabs Chionoecetes opilio from Conception Bay, Newfoundland

Bitter crab disease (BCD) of snow crabs Chionoecetes opilio is caused by a parasitic dinoflagellate, Hematodinium sp. In Newfoundland's commercial fishery, infected snow crabs are identified using visual, macroscopic signs of disease for separation prior to processing. We estimated the sensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diseases of aquatic organisms 2003-01, Vol.53 (1), p.67-75
Hauptverfasser: PESTAL, Gottfried P, TAYLOR, David M, HOENIG, John M, SHIELDS, Jeffrey D, PICKAVANCE, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bitter crab disease (BCD) of snow crabs Chionoecetes opilio is caused by a parasitic dinoflagellate, Hematodinium sp. In Newfoundland's commercial fishery, infected snow crabs are identified using visual, macroscopic signs of disease for separation prior to processing. We estimated the sensitivity and specificity of gross, macroscopic diagnosis of Hematodinium sp. by comparing these results with microscopic examination of prepared hemolymph smears. The sensitivity of a diagnostic test is the probability that the test will yield a positive result given that the animal has the disease. The specificity is the probability of a negative result given the animal is not diseased. In October 1998, we conducted a design-based survey using cluster sampling in 2 strata. Over 10 000 snow crabs from pot and trawl surveys were examined macroscopically for BCD. In addition, over 350 crabs were randomly examined microscopically for disease. The double sampling resulted in an estimated sensitivity of 52.7% and an estimated specificity of 100%. That is, a positive result from macroscopic examination is definitive, if the observer is well trained, but macroscopic examination will fail to detect infections in crabs with borderline clinical signs of disease. The prevalence estimated from macroscopic observations (p(st) = 2.24%) was corrected for misclassification by dividing p(st) by the estimated sensitivity (0.527), giving a corrected estimate of 4.25%. The use of double sampling provides for efficient estimation of prevalence in that large numbers of crabs can be quickly examined for gross signs of infection and the results corrected for misclassification based on a limited number of observations with a better, but time-consuming test. In addition, the prevalence of macroscopically infected male crabs was lower in a trap survey (0.57%) compared to a trawl survey (1.59%). In the trawl survey, female crabs had a significantly higher prevalence of macroscopically diagnosed infections than males (6.34%). The prevalence of BCD has shown an alarming increase since it was first detected in Newfoundland during the early 1990s. Transmission and mortality studies are warranted to better understand the effect of the disease on its commercially important host.
ISSN:0177-5103
1616-1580
DOI:10.3354/dao053067