Molecular detection methods developed for a systemic rickettsia-like bacterium (RLB) in Penaeus monodon (Decapoda: Crustacea)

Molecular detection methods were developed to aid in the diagnosis of a rickettsia-like bacterium (RLB) which caused severe mortalities of farm-raised Penaeus monodon in Madagascar. Using primers derived from the 16S rRNA gene of bacteria, a PCR assay was optimized to amplify this region of the geno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diseases of aquatic organisms 2003-01, Vol.53 (1), p.15-23
Hauptverfasser: NUNAN, Linda M, POULOS, Bonnie, REDMAN, Rita, LE GROUMELLEC, Marc, LIGHTNER, Donald V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular detection methods were developed to aid in the diagnosis of a rickettsia-like bacterium (RLB) which caused severe mortalities of farm-raised Penaeus monodon in Madagascar. Using primers derived from the 16S rRNA gene of bacteria, a PCR assay was optimized to amplify this region of the genome of the RLB, using extracted DNA from infected P. monodon tissue as the template. The resulting amplified PCR product was sequenced and 2 novel primers were selected from the variable region of the gene. These primers amplified a 532 bp fragment of DNA originating from the rickettsia-infected samples. The PCR assay was optimized and tested on DNA extracted from specific pathogen-free (SPF) P. vannamei tissue and several other strains of bacteria. The PCR assay with the rickettsia-specific primers was specific for this RLB and did not amplify the other DNA samples tested. The 532 bp PCR-amplified fragment was labeled with digoxigenin (DIG) for in situ hybridization assays. This probe was tested on SPF, RLB and bacteria-infected shrimp specimens preserved in Davidson's fixative. The probe was specific for both natural and experimental rickettsial infections. Hybridization with this probe required a stringent temperature of 65 degrees C, otherwise cross-reactivity was observed with other types of bacteria.
ISSN:0177-5103
1616-1580
DOI:10.3354/dao053015