Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats

This study was designed to analyze the possible cadmium effects on time-of-day variations of anterior, mediobasal, and posterior hypothalamic contents of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) content in adult male rats. Also DA and 5-HT metabolism, as expressed by the ratio 3,4-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2003-03, Vol.149 (2), p.200-206
Hauptverfasser: LAFUENTE, A, GONZALEZ-CARRACEDO, A, ROMERO, A, ESQUIFINO, A. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study was designed to analyze the possible cadmium effects on time-of-day variations of anterior, mediobasal, and posterior hypothalamic contents of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) content in adult male rats. Also DA and 5-HT metabolism, as expressed by the ratio 3,4-dihydroxyphenyl acetic acid (DOPAC) to DA and 5-hydroxyindoleacetic acid (5-HIAA) to 5-HT, respectively, were studied. Adult male rats were given cadmium at a dose of 25 ppm of cadmium chloride in drinking water for 1 month. Age-matched rats having access to cadmium-free water were used as controls. Weight gain for the whole period was not changed by cadmium exposure. The metal accumulated in the hypothalamus of rats. In the three hypothalamic regions, significant 24-h variations of NE and 5-HT concentration were found in controls, while DA content changed rhythmically in mediobasal hypothalamus only. Mean content of NE, 5-HT, and DA of anterior, mediobasal, and posterior hypothalamus decreased after cadmium exposure. After cadmium the 24-h pattern of NE changed only in mediobasal hypothalamus, whereas the metal changed significantly the pattern of 5-HT in all regions. DOPAC to DA and 5-HIAA to 5-HT ratios decreased and were differentially changed in all hypothalamic regions analyzed in cadmium-treated rats. There was a statistically significant relationship between time of administration of metal and time that the change took place in biogenic amines in the hypothalamus. These results indicate that cadmium may depress hypothalamic biogenic amine release.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-002-1356-6