Interactions among memory-related centers in the brain
The structures associated with learning and memory have been widely studied for over 100 years. The idea of the famous neuropsychologist K.S. Lashley, that learning and memory are stored diffusely in the brain, dominated neuroscience in the early half of Twentieth Century. Since Scoville reported in...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience research 2003-03, Vol.71 (5), p.609-616 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structures associated with learning and memory have been widely studied for over 100 years. The idea of the famous neuropsychologist K.S. Lashley, that learning and memory are stored diffusely in the brain, dominated neuroscience in the early half of Twentieth Century. Since Scoville reported in 1957 a persistent impairment of recent memory caused by bilateral medial temporal lobe resection in a patient, the concept that different brain structures play different roles in learning and memory has been established, but the structures were thought to work separately. The connections and functional influences between hippocampus and prefrontal cortex, thalamus and hippocampus, prefrontal cortex and thalamus, amygdala and hippocampus, basal nucleus of Meynert and medial temporal lobe system, and amygdala and thalamus were successively reported. The marginal division (MrD) is a pan‐shaped structure consisting of spindle‐shaped neurons at the caudal margin of the neostriatum in the mammalian brain. The MrD has been shown to contribute to associative learning and declarative memory by behavioral study in rats and by functional magnetic resonance image study in humans. Lesions in the MrD influenced the learning and memory function of the basal nucleus of Meynert and attenuated hippocampal long‐term potentiation. The MrD is likely, based on its position, advanced development in higher mammalian brains, abundant and swift blood supply, and complex connections, to be an important subcortical memory center in the brain. The above‐mentioned studies demonstrated that memory‐related centers could influence each other and play different roles. Therefore, we propose that there are very possibly hierachical memory centers in the brain. © 2003 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0360-4012 1097-4547 |
DOI: | 10.1002/jnr.10545 |