Finite element analysis of cervical spinal instability under physiologic loading
The definition of cervical spinal instability has been a subject of considerable debate and has not been clearly established. Stability of the motion segment is provided by ligaments, facet joints, and disc, which restrict range of movement. Moreover, permanent damage to one of the stabilizing struc...
Gespeichert in:
Veröffentlicht in: | Journal of spinal disorders & techniques 2003-02, Vol.16 (1), p.55-65 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The definition of cervical spinal instability has been a subject of considerable debate and has not been clearly established. Stability of the motion segment is provided by ligaments, facet joints, and disc, which restrict range of movement. Moreover, permanent damage to one of the stabilizing structures alters the roles of the other two. Although many studies have been conducted to investigate cervical injuries, to date there are only limited finite element investigations reported in the literature on the biomechanical response of the cervical spine in these respects. A comprehensive, geometric, nonlinear finite element model of the lower cervical spine has been successfully developed and validated under compression, anterior-posterior shear, and sagittal moments. Injury studies were done by varying each spinal component independently from the validated model. Seven analyses were conducted for each injury simulation (model without ligaments, model without facets, model without facets and ligaments, and model without disc nucleus). Results indicate that the role of the ligaments in resisting anterior and posterior shear and flexion and axial rotation moments is important. Under other physiologic loading (anterior-posterior shear, flexion-extension, lateral bending, and axial rotation), the disc nucleus is responsible for the initial stiffness of the cervical spine. The results also highlight the importance of facets in resisting compression at higher loads, anterior shear, extension, lateral bending, and torsion. The results provide new insight through injury simulation into the role of the various spinal components in providing cervical spinal stability. These findings seem to correlate well with experimental results as well as with common clinical experience. |
---|---|
ISSN: | 1536-0652 1539-2465 |
DOI: | 10.1097/00024720-200302000-00010 |