Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2

Oncoprotein Mdm2 is a master negative regulator of the tumor suppressor p53 and has been recently shown to regulate the ubiquitination of beta-arrestin 2, an important adapter and scaffold in signaling of G-protein-coupled receptors (GPCRs). However, whether beta-arrestin 2 has any effect on the fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-02, Vol.278 (8), p.6363-6370
Hauptverfasser: Wang, Ping, Gao, Hua, Ni, Yanxiang, Wang, Beibei, Wu, Yalan, Ji, Lili, Qin, Linhua, Ma, Lan, Pei, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oncoprotein Mdm2 is a master negative regulator of the tumor suppressor p53 and has been recently shown to regulate the ubiquitination of beta-arrestin 2, an important adapter and scaffold in signaling of G-protein-coupled receptors (GPCRs). However, whether beta-arrestin 2 has any effect on the function of Mdm2 is still unclear. Our current results demonstrated that the binding of Mdm2 to beta-arrestin 2 was significantly enhanced by stimulation of GPCRs. Activation of GPCRs led to formation of a ternary complex of Mdm2, beta-arrestin 2, and GPCRs and thus recruited Mdm2 to GPCRs at plasma membrane. Moreover, the binding of beta-arrestin 2 to Mdm2 suppressed the self-ubiquitination of Mdm2 and consequently reduced the Mdm2-mediated p53 degradation and ubiquitination. Further experiments revealed that overexpression of beta-arrestin 2 enhanced the p53-mediated apoptosis while suppression of endogenous beta-arrestin 2 expression by RNA interference technology considerably attenuated the p53-mediated apoptosis. Our study thus suggests that beta-arrestin 2 may serve as a cross-talk linker between GPCR and p53 signaling pathways.
ISSN:0021-9258
DOI:10.1074/jbc.M210350200