Growth Hormone Action on Proliferation and Differentiation of Cerebral Cortical Cells from Fetal Rat
To define the role of GH during central nervous system development, we performed studies in cultured rat cerebral cortical cells from 14- (E14) and 17-d-old embryos (E17). The expression of GH receptor, IGF-I receptor, and IGF-I mRNAs was confirmed. In E17, GH increased total cell number (3.9-fold),...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2003-03, Vol.144 (3), p.1086-1097 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To define the role of GH during central nervous system development, we performed studies in cultured rat cerebral cortical cells from 14- (E14) and 17-d-old embryos (E17). The expression of GH receptor, IGF-I receptor, and IGF-I mRNAs was confirmed. In E17, GH increased total cell number (3.9-fold), [3H]-thymidine incorporation (3.5-fold), proliferating cell nuclear antigen levels (2.5-fold), and bromodeoxyuridine (BrdU)-positive cells (2.5-fold). GH action on nestin/BrdUpositive cells was increased in E14 cells at 3 d in vitro (80-fold) but not at 7 d in vitro. In E14 cells, GH increased (9.5-fold) β-tubulin/BrdU cells. In E17 cells, GH induced neuronal differentiation, as indicated by the absence of β-tubulin/BrdU-positive cells and the 5.9-fold increment of β-tubulin protein, and increased glial fibrillary acidic protein/BrdU-positive cells (2.5-fold) and glial fibrillary acidic protein expression (4.5-fold). GH-induced proliferation and differentiation was blocked by IGF-I antiserum. GH increased IGF-binding protein-3 (IGFBP-3), IGF-I receptor protein and its phosphorylation. This study shows that GH promotes proliferation of neural precursors, neurogenesis, and gliogenesis during brain development. These responses are mediated by locally produced IGF-I. GH-induced IGFBP-3 may also have a role in these responses. Therefore, GH is able to activate the IGF-I/IGFBP-3 system in these cerebral cells and induce a physiological action of IGF-I. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2002-220667 |