Organization of the shrimp vitellogenin gene: evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas

Vitellogenin is the major egg yolk protein synthesized in female shrimp during gonad maturation. Although there are several reports for the cloning of vitellogenin complementary DNA (cDNA) in different crustaceans, little is known of the gene organization of this protein. This study reports the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 2003-01, Vol.303 (C), p.99-109
Hauptverfasser: Tsang, Wing-Sze, Quackenbush, L.Scott, Chow, Billy K.C., Tiu, Shirley H.K., He, Jian-Guo, Chan, Siu-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vitellogenin is the major egg yolk protein synthesized in female shrimp during gonad maturation. Although there are several reports for the cloning of vitellogenin complementary DNA (cDNA) in different crustaceans, little is known of the gene organization of this protein. This study reports the first cloning and characterization of a full-length gene encoding the vitellogenin precursor from the shrimp Metapenaeus ensis. By genomic DNA library screening, six different lambda clones were isolated using shrimp partial gene sequence as probe. Initial DNA sequence determination revealed that these clones are derived from different genes with coding sequence similar to other crustacean vitellogenins. Two of these clones were used for further analysis. One of the lambda clones (λ3.3) carries most of the coding sequence that correspond to the M. ensis vitellogenin gene (MeVg1) and the other clone (λ8.3) carries a smaller portion of the coding sequence of a different vitellogenin gene (MeVg2). The λ3.3 clone was chosen for further characterization. To clone the remaining 5′ end upstream promoter region, 5′ untranslated region and the remaining coding sequence of MeVg1, a polymerase chain reaction (PCR)-based gene walking approach was used. Subsequently, a PCR clone with overlapping sequence identical to the genomic clone was obtained and the organization of MeVg1 gene was constructed. The MeVg1 gene consists of 15 exons and 14 introns spanning approximately 10 kb. Several potential cleavage sites were identified from the deduced vitellogenin precursor. Cleaving of the precursor in these sites would result in the production of several vitellogenin subunits. To clone the cDNA for the vitellogenin, 5′ and 3′ rapid amplification of cDNA ends was performed using ovary cDNA of the shrimp. A 4.4 kb 5′ cDNA clone and a 4 kb 3′ end cDNA clone were isolated. The size of the reconstructed cDNA for M. ensis Vg is 7.97 kb and consists of the longest open reading frame of 7776 bp. Unlike the vitellogenin precursor of most insects and vertebrates, the deduced vitellogenin precursor lacks the polyserine domain important for receptor-mediated endocytosis. Phylogenetic analysis revealed a closer relationship of the MeVg1 with other crustacean vitellogenins but distantly related to other invertebrate and vertebrate vitellogenins. By reverse transcription-PCR, we have demonstrated that the shrimp MeVg1 gene is expressed only in the ovary and hepatopancreas while the MeVg2 gene is expr
ISSN:0378-1119
1879-0038
DOI:10.1016/S0378-1119(02)01139-3