P-selectin and E-selectin. Distinct but overlapping leukocyte ligand specificities

P-selectin on platelets and endothelial cells and E-selectin on endothelial cells are leukocyte receptors that recognize lineage-specific carbohydrates on neutrophils and monocytes. The proposed ligands for these receptors contain the Le(x) core and sialic acid. Since other investigators have shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1992-06, Vol.267 (16), p.11104-11110
Hauptverfasser: LARSEN, G. R, SAKO, D, AHERN, T. J, SHAFFER, M, ERBAN, J, SAJER, S. A, GIBSON, R. M, WAGNER, D. D, FURIE, B. C, FURIE, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:P-selectin on platelets and endothelial cells and E-selectin on endothelial cells are leukocyte receptors that recognize lineage-specific carbohydrates on neutrophils and monocytes. The proposed ligands for these receptors contain the Le(x) core and sialic acid. Since other investigators have shown that both E-selectin and P-selectin bind to sialylated Le(x), we evaluated whether E-selectin and P-selectin recognize the same counter-receptor on leukocytes. The interaction of HL60 cells with Chinese hamster ovary (CHO) cells expressing P-selectin or E-selectin was studied. To determine whether a protein component is required in addition to sialyl Le(x) for either P-selectin or E-selectin recognition, HL60 cells or neutrophils were digested with proteases, including chymotrypsin, elastase, proteinase Glu-C, ficin, papain, or thermolysin. Cells treated with these proteases bound E-selectin but not P-selectin. Fucosidase or neuraminidase treatment of HL60 cells markedly decreased binding to both E-selectin- and P-selectin-expressing CHO cells. Growth of HL60 cells in tunicamycin inhibited the ability of these cells to support P-selectin-mediated binding and, to a lesser extent, E-selectin-mediated binding. Purified P-selectin inhibited CHO:P-selectin binding to HL60 cells, but incompletely inhibited CHO:E-selectin binding to HL60 cells. However, purified soluble E-selectin inhibited CHO:P-selectin and CHO:E-selectin binding to HL60 cells equivalently and completely. COS cells, unable to bind to E-selectin or P-selectin, bound E-selectin but not P-selectin upon transfection with alpha-1,3-fucosyltransferase or alpha-1,3/1,4-fucosyltransferase. Similarly, LEC 11 cells expressing sialyl Le(x) bound E-selectin- but not P-selectin-expressing CHO cells. Sambucus nigra lectin, specific for the sialyl-2,6 beta Gal/GalNAc linkage, inhibited P-selectin but not E-selectin binding to HL60 cells. Although sialic acid and Le(x) are components of the P-selectin ligand and the E-selectin ligand, these results indicate that the ligands are related, having overlapping specificities, but are structurally distinct. A protein component containing sialyl Le(x) in proximity to sialyl-2,6 beta Gal structures on the P-selectin ligand may contribute to its specificity for P-selectin.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(19)49881-5