Eye regeneration at the molecular age
Eye tissues such as the lens and the retina possess remarkable regenerative abilities. In amphibians, a complete lens can be regenerated after lentectomy. The process is a classic example of transdifferentiation of one cell type to another. Likewise, retina can be regenerated, but the strategy used...
Gespeichert in:
Veröffentlicht in: | Developmental dynamics 2003-02, Vol.226 (2), p.211-224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eye tissues such as the lens and the retina possess remarkable regenerative abilities. In amphibians, a complete lens can be regenerated after lentectomy. The process is a classic example of transdifferentiation of one cell type to another. Likewise, retina can be regenerated, but the strategy used to replace the damaged retina differs, depending on the animal system and the age of the animal. Retina can be regenerated by transdifferentiation or by the use of stem cells. In this review, we present a synthesis on the regenerative capacity of eye tissues in different animals with emphasis on the strategy and the molecules involved. In addition, we stress the place of this field at the molecular age and the importance of the recent technologic advances. Developmental Dynamics 226:211–224, 2003. © 2003 Wiley‐Liss, Inc. |
---|---|
ISSN: | 1058-8388 1097-0177 |
DOI: | 10.1002/dvdy.10224 |