Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat

The effect of direct cortical electrical stimulation on the pattern of erythrocyte perfusion in the capillary network of the rat cerebral cortex was studied by fluorescence intravital video-microscopy. The movement of fluorescently labeled red blood cells (FRBCs) in individual capillaries 50–70 μm s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2003-02, Vol.963 (1), p.81-92
Hauptverfasser: Schulte, M.L., Wood, J.D., Hudetz, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of direct cortical electrical stimulation on the pattern of erythrocyte perfusion in the capillary network of the rat cerebral cortex was studied by fluorescence intravital video-microscopy. The movement of fluorescently labeled red blood cells (FRBCs) in individual capillaries 50–70 μm subsurface in the dorsal somatosensory cortex was visualized using a closed cranial window. Cortical stimulation electrodes were placed on opposite sides of the window. FRBC velocity (mm/s) and supply rate (cells/s) were measured in 51 capillaries from six rats before and during electrical stimulation of increasing intensities (15-s trains of 3-Hz, 3-ms, 0.5–5.0-mA, square pulses). FRBC velocity, supply rate, and the instantaneous capillary erythrocyte content (lineal cell density, LCD, cells/mm) increased with the stimulation current and reached maxima of 110, 160 and 33% above control, respectively. Capillaries with low resting velocity showed a greater response than those with high resting velocity. The fraction of capillaries in which FRBC velocity increased was not constant, but increased with the stimulation current, as did the magnitude of the velocity change in these capillaries. A few capillaries showed a negative FRBC velocity response at stimulations
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(02)03848-9