Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis

Hybrid zones are fascinating systems to investigate the structure of genetic barriers. Marine hybrid zones deserve more investigation because of the generally high dispersion potential of planktonic larvae which allows migration on scales unrivalled by terrestrial species. Here we analyse the geneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2003-02, Vol.12 (2), p.447-461
Hauptverfasser: Bierne, N., Borsa, P., Daguin, C., Jollivet, D., Viard, F., Bonhomme, F., David, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid zones are fascinating systems to investigate the structure of genetic barriers. Marine hybrid zones deserve more investigation because of the generally high dispersion potential of planktonic larvae which allows migration on scales unrivalled by terrestrial species. Here we analyse the genetic structure of the mosaic hybrid zone between the marine mussels Mytilus edulis and M. galloprovincialis, using three length‐polymorphic PCR loci as neutral and diagnostic markers on 32 samples along the Atlantic coast of Europe. Instead of a single genetic gradient from M. galloprovincialis on the Iberian Peninsula to M. edulis populations in the North Sea, three successive transitions were observed in France. From South to North, the frequency of alleles typical of M. galloprovincialis first decreases in the southern Bay of Biscay, remains low in Charente, then increases in South Brittany, remains high in most of Brittany, and finally decreases again in South Normandy. The two enclosed patches observed in the midst of the mosaic hybrid zone in Charente and Brittany, although predominantly M. edulis‐like and M. galloprovincialis‐like, respectively, are genetically original in two respects. First, considering only the various alleles typical of one species, the patches show differentiated frequencies compared to the reference external populations. Second, each patch is partly introgressed by alleles of the other species. When introgression is taken into account, linkage disequilibria appear close to their maximum possible values, indicating a strong genetic barrier within all transition zones. Some pre‐ or postzygotic isolation mechanisms (habitat specialization, spawning asynchrony, assortative fertilization and hybrid depression) have been documented in previous studies, although their relative importance remains to be evaluated. We also provided evidence for a recent migratory ‘short‐cut’ connecting M. edulis‐like populations of the Charente patch to an external M. edulis population in Normandy and thought to reflect artificial transfer of spat for aquaculture.
ISSN:0962-1083
1365-294X
DOI:10.1046/j.1365-294X.2003.01730.x