Production of vitamins, coenzymes and related biochemicals by biotechnological processes

Vitamins and related biofactors belong to those few chemicals with a direct positive appeal to people. There is indeed a large need for extra vitamins, other than those derived from plant and animal food sources, due to unbalanced food habits or processing, food shortage or disease. Added vitamins a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 1992, Vol.53 (4), p.313-327
1. Verfasser: Vandamme, Erick J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vitamins and related biofactors belong to those few chemicals with a direct positive appeal to people. There is indeed a large need for extra vitamins, other than those derived from plant and animal food sources, due to unbalanced food habits or processing, food shortage or disease. Added vitamins are now either prepared chemically or biotechnologically via fermentation or bioconversion processes. Several vitamins and related biofactors are now only or mainly produced chemically (vitamin A, cholecalciferol (D3), tocopherol (E), vitamin K2, thiamine (B1), niacin (PP or B3), pantothenic acid (B5), pyridoxine (B6), biotin (H or B8), folic acid (B9) or via extraction processes (beta-carotene or provitamin A, provitamin D3, tocopherol, vitamin F-group). However, for several of these compounds microbiological or algal methods also exist or are rapidly emerging. Others are produced practically exclusively via fermentation (ergosterol or provitamin D2, riboflavin (B2), cyanocobalamin (B12), orotic acid (B13), vitamin F-group, ATP, nucleosides, coenzymes, etc. or via microalgal culture (beta-carotene, E, F). Both chemical and microbial processes are run industrially for vitamin B2 while vitamin C (ascorbic acid) is produced via a combination of chemical reactions and fermentation processes. A survey is given here of the current state of vitamin production, with emphasis on developments and strategies for improved biotechnological production and its significance, as compared to existing chemical processes. The screening or construction of vitamin hyperproducing microbial strains is a difficult task; pathway elucidation and metabolic (de)regulation need further study; r-DNA technology has only recently been introduced; improved fermentation processes and immobilised biocatalysts bioconversions for the synthesis of chiral vitamin compounds or intermediates or derivatives are gaining importance; the recovery and purification of these vitamin compounds from their fermentation broths remains equally complex.
ISSN:0268-2575
1097-4660
DOI:10.1002/jctb.280530402