Potential involvement of the cyclooxygenase-2 pathway in the regulation of tumor-associated angiogenesis and growth in pancreatic cancer
Angiogenesis plays a crucial role in tumor development and growth. The present investigation was undertaken to test the potential involvement of the cyclooxygenase-2 (COX-2) pathway in the regulation of angiogenesis and growth in pancreatic cancer. We compared the angiogenic characteristics of a COX...
Gespeichert in:
Veröffentlicht in: | Molecular cancer therapeutics 2003-01, Vol.2 (1), p.1-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angiogenesis plays a crucial role in tumor development and growth. The present investigation was undertaken to test the potential involvement of the cyclooxygenase-2 (COX-2) pathway in the regulation of angiogenesis and growth in pancreatic cancer. We compared the angiogenic characteristics of a COX-2-positive human pancreatic tumor cell line, BxPC-3, with those of a COX-2-negative pancreatic tumor cell line, AsPC-1. Cultured BxPC-3 cells promoted a marked increase of endothelial cell migration in comparison with migration that occurred in the absence of cancer cells. Furthermore, BxPC-3 cell culture supernatants induced endothelial cell capillary morphogenesis in vitro and neovascularization in vivo. In contrast, cultured AsPC-1 cells elicited a modest effect on endothelial cell migration and neovascularization in vivo. Pretreatment of BxPC-3 cells with the selective COX-2 inhibitor NS-398 (50 micro M) dramatically decreased angiogenic responses of endothelial cells. NS-398 (25-100 micro M) caused inhibition of BxPC-3 cell proliferation but had no effect on AsPC-1 cell growth. SC-560, a selective COX-1 inhibitor, had no effect on growth of either cell lines. These results suggest an involvement of COX-2 in the control of tumor-dependent angiogenesis and growth in certain pancreatic cancers and provide the rational for inhibition of the COX pathway as an effective therapeutic approach for pancreatic tumors. |
---|---|
ISSN: | 1535-7163 |