Divergent Light-, Ascorbate-, and Oxidative Stress-Dependent Regulation of Expression of the Peroxiredoxin Gene Family in Arabidopsis

Peroxiredoxins (prxs) are peroxidases with broad substrate specificity. The seven prx genes expressed in Arabidopsis shoots were analyzed for their expressional response to changing photon fluence rates, oxidative stress, and ascorbate application. The results reveal a highly variable and gene-speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2003-01, Vol.131 (1), p.317-325
Hauptverfasser: Horling, Frank, Petra Lamkemeyer, König, Janine, Iris Finkemeier, Andrea Kandlbinder, Baier, Margarete, Dietz, Karl-Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peroxiredoxins (prxs) are peroxidases with broad substrate specificity. The seven prx genes expressed in Arabidopsis shoots were analyzed for their expressional response to changing photon fluence rates, oxidative stress, and ascorbate application. The results reveal a highly variable and gene-specific response to reducing and oxidizing conditions. The steady-state transcript amounts of the chloroplast-targeted prxs, namely the two-cysteine (2-Cys) prxs, prx Q and prx II E, decreased upon application of ascorbate. prx Q also responded to peroxides and diamide treatment. prx II B was induced by tertiary butylhydroperoxide, but rather unaffected by ascorbate. The strongest responses were observed for prx II C, which was induced with all treatments. The two Arabidopsis 2-Cys Prxs and four Prx II proteins were expressed heterologously in Escherichia coli. In an in vitro test system, they all showed peroxidase activity, but could be distinguished by their ability to accept dithiothreitol and thioredoxin as electron donor in the regeneration reaction. The midpoint redox potentials (Em′) of Prx II B, Prx II C, and Prx II E were around -290 mV and, thus, less negative than Em′ of Prx II F, 2-Cys Prx A, and 2-Cys Prx B (-307 to -322 mV). The data characterize expression and function of the mitochondrial Prx II F and the chloroplast Prx II E for the first time, to our knowledge. Antibodies directed against 2-Cys Prx and Prx II C showed a slight up-regulation of Prx II protein in strong light and of 2-Cys Prx upon transfer both to high and low light. The results are discussed in context with the subcellular localization of the Prx gene products.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.010017