Nitric oxide decreases the production of inositol phosphates stimulated by angiotensin II and thyrotropin-releasing hormone in anterior pituitary cells
Nitric oxide (NO) affects the synthesis of several second messengers, such as cyclic nucleotides, arachidonic acid metabolites and the intracellular calcium concentration, involved in the anterior pituitary hormone release. The present study was performed to investigate the effect of NO on phosphoin...
Gespeichert in:
Veröffentlicht in: | European journal of endocrinology 2003, Vol.148 (1), p.89-97 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitric oxide (NO) affects the synthesis of several second messengers, such as cyclic nucleotides, arachidonic acid metabolites and the intracellular calcium concentration, involved in the anterior pituitary hormone release. The present study was performed to investigate the effect of NO on phosphoinositide metabolism.
The synthesis of inositol phosphates (IPs) was studied in primary cultures of anterior pituitary cells from Wistar male rats. IPs (mono, bis and tris phosphates) were determined by ionic exchange chromatography.
Sodium nitroprusside and DETA NONOate (DETA/NO) significantly decreased IP synthesis and prolactin release stimulated by angiotensin II (AngII) and thyrotropin-releasing hormone (TRH). These effects were not observed with decayed DETA NONOate (unable to release NO). LY-83583, a guanylyl cyclase inhibitor, completely reversed the inhibitory effect of DETA/NO on AngII-induced IP production. However, BAY 41-2272, a novel stimulator of the soluble guanylyl cyclase, did not mimic the effect of NO donors. Likewise, neither 8-Bromine-cyclic GMP (8-Br-cGMP), an analog of cGMP, nor Sp-8-pCPT-cGMPS triethylamine, a cGMP-dependent protein kinase (PKG) stimulator, decreased IP synthesis stimulated by AngII. In addition, Rp-8-pCPT-cGMPS triethylamine, a PKG inhibitor, did not block the effect of NO. The decrease of IPs induced by DETA/NO was fully reversed by guanosine 5'-O-(3-thiotriphosphate) tetralithium salt, a non-hydrolyzable analog of GTP.
The present work indicated that NO decreases IP synthesis stimulated by Ang II and TRH in anterior pituitary cells by a soluble guanylyl cyclase/cGMP/PKG-independent pathway, and suggested that NO affects some regulatory factor located between the plasma membrane receptor and G-protein. |
---|---|
ISSN: | 0804-4643 1479-683X |
DOI: | 10.1530/eje.0.1480089 |