Insulin can block apoptosis by decreasing oxidative stress via phosphatidylinositol 3-kinase- and extracellular signal-regulated protein kinase-dependent signaling pathways in HepG2 cells

Insulin has well-known activities in controlling energy metabolism, cellular proliferation and biosynthesis of functional molecules to maintain a biological homeostasis. Recently, several studies have suggested that insulin may protect cells from apoptosis in different cell lines; however, little is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of endocrinology 2003, Vol.148 (1), p.147-155
Hauptverfasser: KANG, Shinhae, SONG, Jihoon, KANG, Heekyoung, KIM, Sejae, LEE, Youngki, PARK, Deokbae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insulin has well-known activities in controlling energy metabolism, cellular proliferation and biosynthesis of functional molecules to maintain a biological homeostasis. Recently, several studies have suggested that insulin may protect cells from apoptosis in different cell lines; however, little is known about the nature of its anti-apoptotic activity. In many clinical disorders, including type 2 diabetes mellitus, oxidative stress and the production of reactive oxygen species (ROS) is increased. With these facts as a background, we examined here whether insulin protects HepG2 cells from apoptosis by decreasing oxidative stress and, if so, which signaling steps are involved in this process. Intracellular DNA content, the degree of nuclear condensation or poly(ADP-ribose) polymerase hydrolysis was measured to verify the occurrence of apoptotic events. Caspase-3 activity and ROS accumulation within cells were also measured. Western blot analysis was performed to identify signaling molecules activated in response to insulin. Serum starvation resulted in a marked accumulation of ROS, activation of caspase-3, and subsequent apoptotic cell death which were, in turn, markedly blocked by the addition of insulin. The anti-apoptotic activity of insulin was sensitive to blockade of two different signaling steps, activations of phosphatidylinositol 3-kinase (PI3 kinase) and extracellular signal-regulated protein kinase (ERK). Insulin exerts an anti-apoptotic activity by suppressing the excessive accumulation of ROS within cells through signaling pathways including stimulation of PI3 kinase and ERK in HepG2 cells.
ISSN:0804-4643
1479-683X
DOI:10.1530/eje.0.1480147