Comparison of Microsphere-Equivalent Blood Flow (15O-Water PET) and Relative Perfusion (99mTc-Tetrofosmin SPECT) in Myocardium Showing Metabolism-Perfusion Mismatch

Myocardial perfusion imaging with (99m)Tc-tetrofosmin is based on the assumption of a linear correlation between myocardial blood flow (MBF) and tracer uptake. However, it is known that (99m)Tc-tetrofosmin uptake is directly related to energy-dependent transport processes, such as Na(+)/H(+) ion cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nuclear medicine (1978) 2003-01, Vol.44 (1), p.33-39
Hauptverfasser: Schaefer, Wolfgang M, Nowak, Bernd, Kaiser, Hans-Juergen, Koch, Karl-Christian, Block, Stephan, vom Dahl, Juergen, Buell, Udalrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myocardial perfusion imaging with (99m)Tc-tetrofosmin is based on the assumption of a linear correlation between myocardial blood flow (MBF) and tracer uptake. However, it is known that (99m)Tc-tetrofosmin uptake is directly related to energy-dependent transport processes, such as Na(+)/H(+) ion channel activity, as well as cellular and mitochondrial membrane potentials. Therefore, cellular alterations that affect these energy-dependent transport processes ought to influence (99m)Tc-tetrofosmin uptake independently of blood flow. Because metabolism ((18)F-FDG)-perfusion ((99m)Tc-tetrofosmin) mismatch myocardium (MPMM) reflects impaired but viable myocardium showing cellular alterations, MPMM was chosen to quantify the blood flow-independent effect of cellular alterations on (99m)Tc-tetrofosmin uptake. Therefore, we compared microsphere-equivalent MBF (MBF_micr; (15)O-water PET) and (99m)Tc-tetrofosmin uptake in MPMM and in "normal" myocardium. Forty-two patients with severe coronary artery disease, referred for myocardial viability diagnostics, were examined using (18)F-FDG PET and (99m)Tc-tetrofosmin perfusion SPECT. Relative (18)F-FDG and (99m)Tc-tetrofosmin uptake values were calculated using 18 segments per patient. Normal myocardium and MPMM myocardium were classified using a previously validated (99m)Tc-tetrofosmin SPECT/(18)F-FDG PET score. In addition, (15)O-water PET was performed to assess kinetic-modeled MBF (MBF_kin), the water-perfusable tissue fraction (PTF), and the resulting MBF_micr (MBF_kin x PTF), which is comparable to tracer uptake values. (99m)Tc-tetrofosmin uptake and MBF_micr values were calculated for all normal and MPMM segments and averaged within their respective classifications. Mean relative (99m)Tc-tetrofosmin uptake was 86% +/- 1% in normal myocardium and 56% +/- 1% in MPMM, showing a significant difference (P < 0.001), as was expected from the classification. Contrary to these findings, mean MBF_micr in MPMM myocardium was 0.60 +/- 0.03 mL x min(-1) x mL(-1), which did not significantly differ from normal myocardium (0.64 +/- 0.01 mL x min(-1) x mL(-1)). All values are given as mean +/- SEM. Differences between reduced (99m)Tc-tetrofosmin uptake and the unchanged MBF_micr in MPMM myocardium suggest that the pathophysiologic basis of MPMM is not a blood flow reduction but cellular alterations that affect uptake and retention of (99m)Tc-tetrofosmin independently of blood flow. Therefore, it seems that perfusion deficits in MP
ISSN:0161-5505
1535-5667