Neocortical localization of tactile/proprioceptive limb placing reactions in the rat
The present study was aimed at delineating the neocortical substrate of tactile/proprioceptive limb placing reactions in rats by means of behavioral tests that excluded the participation of facial stimuli in limb function. Using a photochemical technique, we made unilateal focal lesions in the front...
Gespeichert in:
Veröffentlicht in: | Brain research 1992-02, Vol.573 (1), p.44-60 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study was aimed at delineating the neocortical substrate of tactile/proprioceptive limb placing reactions in rats by means of behavioral tests that excluded the participation of facial stimuli in limb function. Using a photochemical technique, we made unilateal focal lesions in the frontal and parietal neocortex. Fore- and/or hindlimb placing deficits resulted from damage to a fronto-parietal region lying between the medial agranular cortex and the primary somatosensory (whisker barrel field) cortex. When the antero-posterior coordinate was varied form 4 mm anterior to 1 mm posterior to bregma, tactile/proprioceptive forelimb dysfunction was more pronounced after damage to the parietal forelimb area, but lesions confined to the frontal lateral agranular cortex also yielded clear-cut forelimb placing deficits. Damage to either area alone allowed for partial recovery of forelimb function. However, following combined, total destruction of both frontal and parietal forelimb areas, forelimb deficits did not recover. This resembled the irreversible hindlimb deficits after near-total destruction of the parietal hindlimb area. Damage to the medial agranular cortex left limb placing intact. Likewise, for as long as the medial edge of lesions to the whisker barrel field did not come closer than 3 mm to the midline, thus remaining outside the parietal hindlimb area, limb placing remained normal. This sharp medial and lateral pyramidal neurons in the deeper parts of layer V. Limb placing remained intact when medial agranular cortex lesions damaged onlu 30% of that subfield, whereas 70% destruction of that layer following more laterraly placed lesions in the parietal hindlimb area produced irreversible hindlimb dysfunction. The severity of hindlimb placing deficits was related to the amount of incursion by whisker barrel field lesions into the subfield of deep layer V large pyramidal neurons. Finally, very large lesions of the occipital cortex did not affect tactile/proprioceptive limb placing. We discuss the neocortical areal and laminar specificity of tactile/proprioceptive limb function in the context of recent neuroanatomical and electrophysiological findings, and their relevance to normal cortical function, recovery from neocortical stroke (including diaschisis), and age-related cortical dysfunction. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/0006-8993(92)90112-M |