A Model to Describe the Settling Behavior of Fractal Aggregates

A model to predict fractal dimension from sedimentating fractal aggregates has been successfully developed. This model was developed using the settling rate and size data of fractal aggregates. In order to test the validity of the model, a purpose-built settling rig, equipped with lens with magnific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2002-03, Vol.247 (1), p.210-219
Hauptverfasser: Tang, P., Greenwood, J., Raper, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A model to predict fractal dimension from sedimentating fractal aggregates has been successfully developed. This model was developed using the settling rate and size data of fractal aggregates. In order to test the validity of the model, a purpose-built settling rig, equipped with lens with magnification of 1200×, which can capture images of particles/flocs down to 2 μm in diameter was used. The performace and technique of the settling rig were validated by comparing the measured settling rates of 30- and 50.7-μm standard particles with their theoretical settling rates calculated using Stokes' law. The measured settling rates were within 10% agreement with the calculated Stokes' velocities. The settling rates and sizes of the particles/flocs were analyzed using image analysis software called WiT 5.3. The maximum temperature gradient across the settling column was 0.1°C, which effectively eliminated convective currents due to temperature differences in the settling column. A total of 1000 calcium phosphate flocs were anaylzed. Calcium phosphate flocs with fractal dimensions varying from 2.3 to 2.8 were generated via orthokinetic aggregation. Measurements of fractal dimensions, using light scattering, were done simultaneously with the settling experiments and they were found to be constant. The fractal dimensions calculated using the model agreed with those obtained by light scattering to within 12%.
ISSN:0021-9797
1095-7103
DOI:10.1006/jcis.2001.8028