The electric sense of the paddlefish: a passive system for the detection and capture of zooplankton prey

Behavioral and electrophysiological experiments have shown that the elongated paddlefish rostrum, with its extensive population of ampullae of Lorenzini, constitutes a passive electrosensory antenna of great sensitivity and spatial resolution. As demonstrated in juvenile paddlefish, the passive elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physiology, Paris Paris, 2002-09, Vol.96 (5), p.363-377
Hauptverfasser: Wilkens, Lon A., Hofmann, Michael H., Wojtenek, Winfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Behavioral and electrophysiological experiments have shown that the elongated paddlefish rostrum, with its extensive population of ampullae of Lorenzini, constitutes a passive electrosensory antenna of great sensitivity and spatial resolution. As demonstrated in juvenile paddlefish, the passive electrosense serves a novel function in feeding serving as the primary, if not exclusive sensory modality for the detection and capture of zooplanktonic prey. Ampullary receptors are sensitive to the weak electrical fields of plankton from distances up to 9 cm, and juvenile paddlefish capture plankton individually with great swimming dexterity in the absence of vision or other stimulus signals. Paddlefish also detect and avoid metal obstacles, the electrical signatures of which are a potential hindrance to their feeding and reproductive migrations. The ampullary receptors, their peripheral innervation and central targets in the dorsal octavolateral nucleus, are described. We also describe the ascending and descending neuronal circuitry of the electrosensory system in the brain based on tracer studies using dextran amines.
ISSN:0928-4257
1769-7115
DOI:10.1016/S0928-4257(03)00015-9