Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21–p22

We report the structural and functional characterization of the HF.10 zinc finger gene (ZNF35) in normal human cells, as well as a processed pseudogene. The HF.10 gene spans about 13 kb and it is interrupted by three introns. All 11 zinc finger DNA-binding domains are contiguously encoded within the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 1992-04, Vol.12 (4), p.720-728
Hauptverfasser: Lanfrancone, Luisa, Pengue, Gina, Pandolfi, Pier-Paolo, Salcini, Anna Elisabetta, Giacomucci, Angelo, Longo, Letizia, Donti, Emilio, De Luca, Pasquale, La Mantia, Girolama, Pelicci, Pier-Giuseppe, Lania, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the structural and functional characterization of the HF.10 zinc finger gene (ZNF35) in normal human cells, as well as a processed pseudogene. The HF.10 gene spans about 13 kb and it is interrupted by three introns. All 11 zinc finger DNA-binding domains are contiguously encoded within the last 3′ exon. The genomic region surrounding HF.10 exon 1 contains a CpG island and acts as a promoter in vitro. Using transient CAT assay in cotransfection experiments in cultured cells, we have determined that the HF.10 finger protein is a transcriptional transactivator. Restriction enzyme mapping and partial nucleotide sequencing of the HF.10 pseudogene indicated that is has arisen by retroposition of spliced HF.10 mRNA. In situ hybridization experiments revealed that both the functional locus and the pseudogene map to chromosome 3p21p22, a region that is frequently deleted in small cell lung and renal carcinomas. Hybridization of the HF.10 gene and the HF.10 pseudogene DNA probes to metaphases from a small cell lung carcinoma cell line with the 3p deletion revealed that both loci are part of the deleted chromosome region.
ISSN:0888-7543
1089-8646
DOI:10.1016/0888-7543(92)90301-8